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Abstract

Two methods have been developed in this paper to model the strain state and the layer geometry of folds. These methods analyse the

superposition of strain patterns due to layer shortening, tangential longitudinal strain, flexural-flow and fold flattening. The first method

multiplies the deformation gradients of these strain patterns to model the successive superposition of mechanisms. The second method is

more general and is based on the transformation of points from the initial configuration to deformed points according to the geometrical

properties of the folding mechanisms involved. This method simulates the simultaneous and successive superposition of strain patterns. Both

methods generate graphic outputs that describe the strain variation through the folded layer. Another application of these methods is to

attempt to find theoretical folds that fit natural or experimental folds and to perform a geometric and kinematical analysis of these folds.

Knowledge of the shape of the folded layer and the cleavage pattern is the most common basic information available in natural folds that can

be used to perform the analysis. Additional strain data from the folded rocks are valuable for improving knowledge of the kinematical

mechanisms involved in the folding.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Folds are common structures in nature and are typical

structures originated by ductile deformation at all scales.

The geometry and degree of evolution of these structures

can be used as indicators of the amount of deformation

undergone by rocks and their study can be the basis of

valuable contributions to the determination of the displace-

ment and strain patterns involved in the development of an

orogen. Nevertheless, despite the interest that the study of

folds presents, the determination of the kinematical folding

mechanisms that operated in a given fold and its state of

strain is a difficult problem to solve at present.

Many of the studies on folding have focused on the

mechanics of the process and have tried to relate the forces

or stresses driving the folding with geometrical features of

the folded layers and the rheological properties of the

materials involved. Hence, concepts such as dominant

wavelength, amplification and selectivity of the folding

(Biot, 1961, 1965) have been very useful to understanding

the buckling process. However, these studies have some

limitations as a result of the mathematical difficulty inherent

in analysing relevant folding models and the added difficulty

of verifying the results of the theoretical studies using

natural folds, due to the limitations imposed by outcrops and

the limitations in determining the rheological behaviour of

the rocks during folding. On the other hand, the introduction

of mathematical simplifying assumptions limits the validity

of the theoretical results. Many of the results of buckling

theory, for instance, can only be successfully applied to

small fold amplitudes. For these reasons, studies aimed at

confirming the mechanical theory of folding using natural

examples are rare.

A different approach to the analysis of folding can be

made from a purely geometrical perspective. In this method,

available theoretical, experimental and field data about the

geometry, strain patterns and other structural features of the

folded layers can be used to construct models that describe

their strain distribution. This analysis is independent of the

stresses driving the folding or the rheological properties of

rocks and it does not provide any direct knowledge about the

causes that produced the folding, but it is a very useful tool

to determine the geometry and kinematics of orogens and it

constitutes a necessary basis for subsequent mechanical

studies. In addition, this analysis does not require the
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outcrops to be of as high a quality as mechanical analysis,

since it can be made using individual layers and fold limbs.

The analysis of folds in the field, and the experimental

and numerical studies of fold development, indicate that

different mechanisms accommodate strain in the folded

layers (layer shortening, shearing parallel to layer bound-

aries, tangential longitudinal strain, flattening, etc.). Ramsay

(1967, pp. 391–456) established the basis of the strain

analysis of folds and made important contributions to the

knowledge of the main folding mechanisms. Subsequently,

Hobbs (1971) analysed the strain in folded layers using

transformation equations suitable for generating the forms

of common folds. Treagus (1982) proposed a fold

classification that relates the isogons and cleavage geome-

try, and studied some simple cases of strain distribution in

folded layers. An excellent synthesis on folding mechan-

isms was made by Ramsay and Huber (1987, pp. 445–473),

who made a detailed analysis of several situations with

initial deformation of the layer combined with flexural-flow.

Twiss and Moores (1992, pp. 314–321) show graphical

examples of strain patterns resulting from several combi-

nations of kinematical folding mechanisms. Hudleston et al.

(1996) have discussed the occurrence of flexural flow in

natural folds. Bobillo-Ares et al. (2000) have studied the

properties of tangential longitudinal strain patterns. Ramsay

and Lisle (2000) have made an analysis of the hetero-

geneous strain described by transformation equations that

define similar fold forms and involve characteristic

displacement patterns of shear folds and flattened shear

folds.

These studies have provided important knowledge on

individual folding mechanisms. Nevertheless, the actual

mechanisms operating in natural folds are usually combi-

nations of several single mechanisms, and have been studied

in many cases from field observations, microfabric analysis

or strain analysis. Certain of these studies have considered

some of the folding mechanisms analysed in this paper

(Chapple and Spang, 1974; Groshong, 1975; Hudleston and

Holst, 1984; Hudleston and Srivastava, 1997; Gutiérrez-A-

lonso and Gross, 1999; among others), while many have

focused on fault-related folds (Fisher and Anastasio, 1994;

Anastasio et al., 1997; Erslev and Mayborn, 1997;

Tavarnelli, 1997; Thorbjornsen and Dunne, 1997; Fischer

and Jackson, 1999; among others). However, the analysis of

kinematical folding mechanisms is in general a difficult

task. The geometrical classifications of folded layers and

surfaces, such as Ramsay’s classification, for instance, are a

good starting point for this analysis, but they are hardly

used. The measurement of strain at many points within a

folded layer is necessary for this analysis, but, unfortu-

nately, it is a very difficult and time-consuming task. To

perform the kinematical analysis of a folded layer, we must

take advantage of all the information supplied by the

geometry of the fold and the associated structures. In this

regard, tectonic foliation is a basic structure that maintains a

well-defined geometrical relationship with the associated

folds and the strain ellipsoid. Overlooking the academic

discussion about the exact orientation of slaty cleavage with

respect to the strain ellipsoid, the perpendicularity between

the tectonic primary foliation and the minor axis of the finite

strain ellipsoid can be taken as a good approximation in

most cases.

In accordance with the notion presented above, the

present paper describes a method to construct, using

combinations of the main kinematical folding mechanisms,

theoretical fold models that contain all the information

about the geometry and strain distribution in the folded

layer. A theoretical fold is constructed by a succession of

folding steps, where each step involves the application of a

specific kinematical mechanism. The analysis is made on

fold profiles assuming plane strain, and the results are

presented in graphic form.

The method can also be used to analyse strain patterns in

natural folds and to gain insight into the folding mechanisms

that operated in their development. To conduct this analysis,

the direction of the intersection between the cleavage

surface and the profile plane of the natural fold is assumed to

give the direction of the major axis of the strain ellipse.

The combination of strain patterns used in the theoretical

models mainly involves layer shortening, flexural-flow,

tangential longitudinal strain and fold flattening. The term

‘layer shortening’ is used with the meaning given by

Ramberg (1964) and the terms ‘flexural-flow’ and ‘tangen-

tial longitudinal strain’ are used following the definition

given by Ramsay (1967, pp. 391–403). The term ‘fold

flattening’ is used to refer to a superposition on a previous

fold of a homogeneous irrotational strain with the direction

of maximum shortening normal to the axial surface (see, for

instance, Ramsay, 1962, 1967, pp. 411–415; Twiss and

Moores, 1992, p. 319). Layer shortening and fold flattening

are both a homogeneous strain superposed to the folds, but

their effects on the fold geometry are different. The former

occurs in the early stages of folding, whereas the latter

occurs in the late stages.

The method also enables the introduction of homo-

geneous strain with maximum shortening perpendicular to

the original configuration of the layer, simulating compac-

tion prior to the folding (Ramsay and Huber, 1987, p. 447),

or longitudinal to the axial surface, simulating a strain

subsequent to the folding and giving rise to unfolding of the

layer. These strains involve the same mathematical

transformation as the other homogeneous strain patterns.

This paper provides insight into the kinematical analysis

of natural folded layers by comparison with theoretical fold

models. The analysis is mainly applicable to symmetrical

folds, although it may give good results in folds with low

asymmetry. The analysis unit is generally a single limb of a

folded layer. The definition of fold limb is taken from

Bastida et al. (1999) and is applied to the folded

configuration of the original midway line between the

layer boundaries, termed the ‘guideline’ (GL). The strain

patterns considered are combined and analysed as the result
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of successive or simultaneous superpositions. The latter

involves a more general analysis in which the models of

successive superpositions are particular cases. Nevertheless,

successive superposition is mathematically simpler and

yields some relevant cases; for this reason, it will be

considered first.

2. Successive superposition of deformations in folding

The general material deformation gradients (F and F0) of

the successive superposition of: (a) layer shortening, (b)

flexural-flow, (c) tangential longitudinal strain, and (d)

flattening, are given by:

F ¼ FFFSFTFSh; ð1Þ

and

F0 ¼ FFFTFSFSh; ð2Þ

where FF, FS, FT and FSh are the material deformation

gradients of flattening, flexural-flow, tangential longitudinal

strain and layer shortening, respectively. Eqs. (1) and (2)

differ in the order of application of gradients FS and FT. This

change in order gives rise to different final results due to the

non-commutative character of the matrix product. Another

notable point about Eqs. (1) and (2) is that the factors are

written in reverse order to that of the physical successive

application of the deformations. In these equations, the

application of a specific mechanism can be cancelled by

making the corresponding matrix to be a unit matrix. Since

FF and FSh represent homogeneous strain, FS or FT must not

be unit matrices for folding to occur. In this part of the paper

we analyse a few simple cases of superposition of the

deformation gradients to model folds. More complicated

cases of superposition of strain patterns will be analysed

below by the development of a more general model.

The general reference system for the analysis of the

deformation at any point of the layer profile has its origin at

the hinge point and is defined by base vectors e1 and e2, the

latter in the inward direction of the axial trace and the

former perpendicular to it (Fig. 1); the coordinates of any

point A will be denoted as (x1, x2). To define lengths and

coordinate values, the original arc length of the GL in a fold

limb will be taken as the measure unit. Dip zero corresponds

to that of the 1-axis, and the convention for the sign of the

layer dip u is given in Fig. 1. The orientation of the principal

direction m (1), corresponding to the principal strain value

l01; is given by the angle f (measured between 0 and 1808),

as shown in Fig. 1.

Two types of graphs will be used to illustrate the results

of the analysis. The first one describes the variation in f as a

function of the layer dip u, and the second one describes the

variation in the aspect ratio of the finite strain ellipse (ratio

between axes, R ¼
ffiffiffiffiffiffiffi
l1=l2

p
) as a function of the layer dip. To

interpret the first type of graph, the terminology of cleavage

patterns is used. Therefore, in a limb with positive dip, the

orientation of m (1) is an axial plane pattern when f ¼ 908, a

convergent fan when f . 908, and a divergent fan when

f , 908. A mixed pattern is frequent, sometimes involving

the existence of a minimum or maximum in the f vs. u

curve. In order to indicate the area of more probable

cleavage development, in both types of graphs the part of

the curves with R $ 2 (corresponding to a shortening of

about 30% when there is no area change) has been

enhanced. The appearance of primary cleavage depends

on the rheological behaviour of the rock and other factors,

but is common with this R value.

2.1. Obtaining the principal direction m (1)

From the material deformation gradient of a super-

position of deformations [e.g. F from Eq. (1)], the spatial

Fig. 1. (a) Initial configuration of the layer showing the reference system used (e1, e2) in the analysis. (b) General (e1, e2) and local (t, n) reference systems used

for strain analysis of a folded layer and angular parameters used to describe the strain pattern; u is the layer dip in P, and f gives the orientation of the major

axis of the finite strain ellipse at the same point. GL is the guideline.
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deformation gradient is given by:

f ¼ F21 ¼

F22

det F

2F12

det F

2F21

det F

F11

det F

2
664

3
775 ¼ fij

h i
ð3Þ

where det F ¼ F11F22 2 F12F21: When no area change is

assumed, det F ¼ 1.

Cauchy’s finite strain tensor of the superposition is:

c ¼ fTf ¼ cij

h i
; ð4Þ

where fT is the transposed matrix of f.

The invariants of c are:

i1 ¼ c11 þ c22 and i2 ¼ c11c22 2 c2
12; ð5Þ

and the principal values, l01 and l02; are the roots of the

equation:

l12 2 i1l
0 þ i2 ¼ 0: ð6Þ

Taking as unity the second component of an eigenvector

m (1) (mð1Þ
2 ¼ 1), the first component is given by:

mð1Þ
1 ¼

2c12

c11 2 l01
: ð7Þ

The plunge of this eigenvector (angle between m (1) and the

x1-axis measured between 0 and 1808) is given by:

f ¼ cos21 mð1Þ
1

lmð1Þl
ð8Þ

where lmð1Þl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1Þ2

1 þ mð1Þ2
2

q
is the modulus of eigenvector

m (1).

2.2. Basic material deformation gradients involved in the

strain pattern superposition

In order to calculate the deformation gradients F and F0

in Eqs. (1) and (2) and the principal direction m (1) in each

case (Eq. (8)), factors FSh, FS, FT and FF must first be

obtained.

Pure (or irrotational) deformation (FP). It represents a

homogeneous strain whose material deformation gradient,

referred to the principal directions, is:

~FP ¼

ffiffiffi
lP

1

q
0

0
ffiffiffi
lP

2

q
2
664

3
775: ð9Þ

Iff is the angle between the
ffiffiffi
lP

1

q
principal direction and the

positive side of the 1-axis (Fig. 1), the transformation matrix

A to refer FP to the general coordinate system is:

A ¼
cosf 2sinf

sinf cosf

" #
: ð10Þ

Referred to this system, FP becomes:

FP ¼ A ~FPAT ¼ FP
ij

h i
; ð11Þ

where FP
12 ¼ FP

21. Although f can have any value between 0

and 1808, in most cases we shall consider f ¼ 908; then, the

transformation matrix (10) becomes

A ¼
0 21

1 0

" #
: ð12Þ

In this case, according to Eq. (11), the material deformation

gradient of the pure deformation referred to the general

coordinate system is:

FP ¼ A ~FPAT ¼

ffiffiffi
lP

2

q
0

0
ffiffiffi
lP

1

q
2
664

3
775: ð13Þ

According to the f-value and the timing of the pure

deformation in relation to the folding, three types of pure

deformation can be considered:

1. Layer shortening (FP ; FSh); it occurs in the early stages

of folding and has f ¼ 908.

2. Fold flattening (FP ; FF); it occurs in the late stages of

folding and has f ¼ 908.

3. Compaction (FP ; FC); it involves f ¼ 08.

Simple shear parallel to the layer boundaries (flexural-

flow). In this case, the deformation at a point of the folded

layer profile can be considered a superposition of simple

shear parallel to the layer boundaries ~FS and layer rotation

R. The shear amount equals the layer dip measured in

radians (Ramsay, 1967, p. 393; Ghosh, 1996), that is:

g < uS: ð14Þ

where uS ¼ u is the layer dip after the flexural-flow.

The material deformation gradient for the simple shear

is:

~FS ¼
1 g

0 1

" #
ð15Þ

and the rotation involved in flexural-flow is given by:

R ¼
cosg 2sing

sing cosg

" #
: ð16Þ

The result of the superposition of simple shear and rotation

is:

FS ¼ R ~FS: ð17Þ

Tangential longitudinal strain. For this mechanism,

Bobillo-Ares et al. (2000) have shown that the material

deformation gradient in the reference frame defined by the

vector (t), tangent to the neutral line, and the normal vector

(n), pointing in the opposite direction to the curvature centre
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(Fig. 1), is:

~FT ¼

1 þ kh 0

2
h2k0

2ð1 þ khÞ

1

1 þ kh

2
64

3
75 ¼

~F11 0

~F21
~F22

" #
; ð18Þ

where k is the curvature of the neutral line [characterised by

a function f(x1)], k0 is the derivative of the curvature with

relation to the arc length of the neutral line, and h is the

ordinate of the point considered within the folded layer.

Since no area change is assumed, ~F22 ¼ 1= ~F11. h of a point is

a function of the coordinates (X, Y ) of the corresponding

undeformed point and, according to Bobillo-Ares et al.

(2000), it is given by:

hðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2kðXÞY

p
2 1

kðXÞ
ð19Þ

where Y . 0 below the original neutral line and Y , 0

above the original neutral line. Y is the variable that will be

used below to obtain the f vs. u and R vs. u curves.

To refer ~FT to the reference frame defined by base

vectors e1 and e2, the latter must be related with the base

vectors t and n (Fig. 1). From the intrinsic theory of curves

(Struik, 1988, p. 13), we have:

t ¼ b½e1 þ f 0ðx1Þe2� ¼
e1 þ f 0ðx1Þe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ½f 0ðx1Þ�

2
p

n ¼ bsign½f 00ðx1Þ�½f
0ðx1Þe1 2 e2�

9>>=
>>;; ð20Þ

where

b ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ½f 0ðx1Þ�
2

p :

The columns of matrix (18) are the image components of

vectors e1 and e2 in the base (t, n), that is:

Fðe1Þ ¼ ~F11t þ ~F21n

Fðe2Þ ¼ ~F22n

)
: ð21Þ

Introducing the expressions for t and n given by Eq. (20)

in Eq. (21) and rearranging, we have:

Fðe1Þ ¼ ~F11bþ bf 0ðx1Þ ~F21sign½f 00ðx1Þ�
� �

e1 þ b ~F11f 0ðx1Þ2 b ~F21sign½f 00ðx1Þ�
� �

e2

Fðe2Þ ¼ bf 0ðx1Þ ~F22sign½f 00ðx1Þ�e1 2 b ~F22sign½f 00ðx1Þ�e2

)
;

ð22Þ

and the material deformation gradient referred to the base e1

and e2 is:

FT

¼
~F11bþ ~F21bf 0ðx1Þsign½f 00ðx1Þ� ~F22bf 0ðx1Þsign½f 00ðx1Þ�

~F11bf 0ðx1Þ2 ~F21bsign½f 00ðx1Þ� 2 ~F22bsign½f 00ðx1Þ�

" #

¼ Fij

h i
:

ð23Þ

The layer dip u at a specific point P in the initial

configuration of a layer boundary can be determined

taking into account that a small vector dX at this point

is deformed to vector dx of the final configuration

according to:

dx ¼ FTdX ð24Þ

For instance, the vector (dX1, 0) is transformed to the

vector (F11dX1, F21dX1), and the total rotation of the

layer trace due to deformation is the final dip, which is

given by:

u ¼ tan21 F21

F11

: ð25Þ

To analyse the strain in a fold developed by

tangential longitudinal strain, it is necessary to choose

a form for the function f(x1) that describes the neutral

line (or the guideline when this mechanism is combined

with others). The fourth-degree polynomial functions:

wuðx1Þ ¼ x3
1 2 2 x1

� �
þ ux2

1 3 2 5x1 þ 2x2
1

� �
; ð26Þ

for u values between 0 and 2/3 have no infinite

curvature in 0 # x1 # 1 (essential condition to allow

working with tangential longitudinal strain) and have an

inflection point at x1 ¼ 1 (the other is outside the

interval [0, 1]). To work with folds with width x0 and

amplitude y0, we will describe the GL using a function

of the type:

f ðx1Þ ¼ y0 wu

x1

x0

� �� �r

; r $ 1; 0 # x1 # x0: ð27Þ

Therefore, the GL is characterised by four parameters

(x0, y0, u, r ). Eq. (27) adequately describes a geometry

range from forms slightly sharper than the sinusoidal

shape to the box shape, including the most common

fold shapes produced by the kinematical mechanisms

involved in this study.

Strain patterns due to tangential longitudinal strain have

been described by Bobillo-Ares et al. (2000) for folds with a

sinusoidal or parabolic neutral line.

2.3. Particular cases of successive deformation

superposition in fold development

The following cases of successive superposition will be

analysed here: (a) layer shortening plus flexural-flow; (b)

layer shortening plus tangential longitudinal strain; (c)

flexural-flow plus flattening; (d) tangential longitudinal

strain plus flattening; (e) layer shortening plus flexural-flow

plus flattening; and (f) layer shortening plus tangential

longitudinal strain plus flattening.

The resultant gradient F or F0 can be obtained

introducing the expressions for FSh (Eq. (13)), FS (Eq.

(17)), FT (Eq. (23)) and/or FF (Eq. (13)) in Eqs. (1) or (2),

and substituting the gradients that are not active in the

superposition by the unit matrix. The principal values and
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directions of the finite strain tensor can be calculated from

Eqs. (6) and (8).

Layer shortening plus flexural-flow. Making FF ¼ FT ¼ I

(I is the unit matrix) in Eq. (1), the material deformation

gradient becomes:

F ¼ FSFSh: ð28Þ

This case has already been analysed by Ramsay and

Huber (1987, p. 470, Fig. 21.34). According to these

authors, curves f vs. u (u00 vs. þd in Ramsay and Huber

(1987)) for different values of the ratio between the

shortening strain ellipse axes (RSh ¼
ffiffiffiffiffiffiffiffiffi
lSh

1 =lSh
2

q
) exhibit a

minimum that tends to disappear as RSh increases. On the

other hand (R ¼
ffiffiffiffiffiffiffi
l1=l2

p
) vs. u plots for several values of RSh

give increasing curves, and for any value of u, R increases

with increasing RSh.

Layer shortening plus tangential longitudinal strain.

Making FF ¼ FS ¼ I in Eq. (1), the material deformation

gradient resulting from the superposition is given by:

F ¼ FTFSh: ð29Þ

Fig. 2 shows several f vs. u and R vs. u curves for

this strain pattern combination. In the outer arc, a

discontinuity is common in the f vs. u curves, so that

the m (1) directions jump from a near concentric

distribution to a convergent one. This jump reflects

the exchange in the orientations of the maximum and

minimum strain axes where the axial ratio R ¼ 1. Both

the layer dip where the discontinuity appears and the

area of the zone with tangential stretching increase with

the fold amplitude, that is, with the progress of folding

(Fig. 2a and b). This result is similar to that obtained

experimentally by Gairola (1978, Fig. 9) by folding a

plasticene layer in a putty matrix. The strain pattern in

this case has been shown graphically by Twiss and

Moores (1992) (Fig. 3). Close to the discontinuity, the

curves show a minimum and a maximum that are probably

due to the dominance of rotational components of the

tangential longitudinal strain in locations with small values

of the strain ellipse ellipticity (Bobillo-Ares et al., 2000). With

higher values of layer shortening than those shown in Fig. 2, it

is possible to verify that the m (1) directions distribution

Fig. 2. f–u (a and b) and R–u (c and d) curves for folds developed by layer shortening plus tangential longitudinal strain with shortening of RSh ¼ 1.2. The

parameters defining the guideline are u ¼ 0.42 and r ¼ 1, which give a good fit of the sinusoidal shape. yf/xf is the aspect ratio of the fold, that is, the ratio

between the maximum values of y and x of the folded guideline. Numbers on the curves indicate the ordinate Y of a layer boundary in the original configuration

(Y . 0 for the inner arc and Y , 0 for the outer arc); low values of Y are necessary because the layer shortening increases the layer thickness to the extent that

high lYl values make tangential longitudinal strain impossible, since area conservation is not possible. The field with R $ 2 in the R–u diagram appears

ornamented.
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becomes a convergent radial pattern both in the inner and the

outer arcs.

The curves of R vs. u show different patterns in the

inner and outer arcs (Fig. 2c and d). In the inner arcs, R

increases with the original distance from the neutral line

and towards the hinge point. It can be checked, by

constructing curves with different values of RSh, that the

field with R $ 2 enlarges with an increase in layer

shortening. In the outer arc, the curves in Fig. 2c and d

exhibit a smooth minimum, which represents the tran-

sition from the field with tangential stretching to the field

with tangential shortening. For higher layer shortening

than that considered in Fig. 2, the curves are always

slightly increasing (minimum strain in the hinge point) in

the outer arc, and R $ 2 appears only when RSh . 2.

Flattened flexural-flow folds. This case corresponds to

Fig. 3. Strain pattern in a folded layer by layer shortening plus tangential

longitudinal strain, showing tangential stretching zones restricted to the

outer arc of the hinge zone (shaded areas). The inner boundary of the

shaded areas is the finite neutral line. After Twiss and Moores (1992).

Fig. 4. f–u (a) and R–u (b) curves for folds developed by flexural-flow plus flattening with different amounts of flattening (RF indicated by numbers on the

curves). The portions of the f–u curves corresponding to R $ 2 are drawn with a thick line and the field with R $ 2 in the R–u diagram appears ornamented.
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the flattened parallel folds analysed by Ramsay (1962, 1967,

pp. 411–415). The material deformation gradient for the

superposition is

F ¼ FFFS: ð30Þ

In this case, the layer rotation (uS) involved in the flexural-flow

does not equal the total layer rotation (u ) after the flattening,

since the flattening produces an additional rotation of the layer.

The total rotation of the layer as a result of the superposition of

flexural-flow and flattening can be obtained using Eq. (25).

A set of curves off vs. u for several amounts of flattening

(RF ¼
ffiffiffiffiffiffiffi
lF

1 =l
F
2

q
) is presented in Fig. 4a. Each curve is

characterised by a minimum that decreases in amplitude and

moves towards the right for higher values of RF. The pattern

of the eigenvector m (1) is a divergent fan for low or middle

layer dips and a convergent fan for high layer dips, but as RF

increases, the m (1) directions approach an axial plane

pattern.

A set of curves of R vs. u for several values of RF is given

in Fig. 4b. They are increasing curves, with the main step of

R concentrated where large dips occur. In this part of the

graph, R reaches greater values than in previous cases.

Tangential longitudinal strain plus flattening. The

transformation equations are given in this case by:

F ¼ FFFT: ð31Þ

As in the previous case, the final dip u of the folded layer

results from rotation associated with tangential longitudinal

strain plus rotation associated with flattening. The method to

obtain u from the material deformation gradient is the same

as above.

The f vs. u curves for two amounts of flattening (RF)

(Fig. 5a and b) show that in the outer arc the concentric

character of the m(1) directions, typical of tangential

longitudinal strain, becomes a divergent distribution and

finally a nearly axial plane pattern as the flattening

increases. In the inner arc, the m(1) direction is normal to

the layer boundary in the hinge and it exhibits a convergent

distribution with a maximum f value for middle dips. For

high flattening, the distribution approaches an axial plane

pattern.

The R vs. u curves (Fig. 5c and d) show that, in the inner

arc, the field with R $ 2 enlarges with the increase in

flattening until it affects the whole arc. In the outer arc, the

strain is much lower than in the inner arc. The area with

Fig. 5. f–u (a and b) and R–u (c and d) curves for folds developed by tangential longitudinal strain plus flattening with two different amounts of flattening (RF).

The parameters defining the guideline are u ¼ 0.42 and r ¼ 1. Numbers on the curves indicate the ordinate Y of a layer boundary in the original configuration.

yf/xf is the aspect ratio of the fold. The portions of the f–u curves corresponding to fold areas with R $ 2 are drawn with a thick line and the field with R $ 2 in

the R–u diagram appears ornamented.
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R $ 2 can only affect the entire outer arc when there are

very high amounts of flattening, penetrating from the limb

towards the hinge and outwards from the neutral line,

inverse to the pattern in the inner arc.

Layer shortening plus flexural-flow plus flattening. In this

case, the material deformation gradient of the superposition

F is given by Eqs. (1) or (2), with FT ¼ I, and FSh, FS and FF

other than the unit. Many different cases can be considered

depending on the amount of shortening (RSh) and flattening

(RF), and some examples are presented in Fig. 6. Fig. 6a and

b shows f vs. u curves for RSh values of 1.1 and 1.5, and

several RF values from 1 to 10. The pattern of m (1)

directions is not very different from that found in flattened

flexural-flow folds (compare Figs. 4a and 6a), and a

tendency towards an axial plane pattern is observed as the

layer shortening and/or the flattening increase. R vs. u

curves for RSh values of 1.1 and 1.5 are shown in Fig. 6c and

d, respectively; they are also comparable with those for

flattened flexural-flow folds (Figs. 4b and 6b), with the

increase in layer shortening giving rise to an increase in the

R values.

Layer shortening plus tangential longitudinal strain plus

flattening. In this case, the material deformation gradient of

the superposition F0 is given by Eqs. (1) or (2) with FS ¼ I,

and FSh, FT and FF other than the unit. f vs. u curves indicate

that an increase in both the shortening and flattening

components enhances the homogeneity of the m (1) direction

distribution in a simple convergent pattern (Fig. 7a and b).

In the R vs. u curves, an increase in layer shortening and

flattening produces an increase in the R value (Fig. 7c and

d). Nevertheless, high values of one or both of these

components are necessary to reach R $ 2 throughout the

folded layer.

3. Generalised model of strain pattern superposition in

symmetric folds

Until now, we have used a simple and accurate method to

analyse the successive superposition of strain patterns in

folds. This method has yielded f–u and R–u curves that

can be used as standards in the study of natural folds.

Fig. 6. f–u (a and b) and R–u (c and d) curves for folds developed by layer shortening plus flexural-flow plus flattening with different amounts of shortening

(RSh) and flattening (RF indicated by numbers on the curves). The portions of the f–u curves corresponding to fold areas with R $ 2 are drawn with a thick line

and the field with R $ 2 in the R–u diagram appears ornamented.
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Nevertheless, it is reasonable to assume that the strain

pattern superposition in natural folds is more complicated

than the models considered above, because it may involve a

simultaneity of mechanisms. If we try to apply the above

method to these cases, many problems arise, since the

mathematical treatment becomes very complicated. On the

other hand, since the strain pattern superposition is not a

commutative process, simultaneity cannot be simulated by

simple superposition of successive strain patterns, but must

be treated as a superposition of small folding steps of each

of the strain patterns involved. In this part of the paper we

study the superposition of many elements of strain patterns

to produce folds and attempt to construct a mathematical

model of more general validity.

The analysis is facilitated by the use of the guideline

(GL). The following properties are assumed for this line:

† In the initial configuration, the GL is positioned midway

between the layer boundaries. In this configuration, the

layer and the GL are usually considered to be horizontal.

† In tangential longitudinal strain, the GL is always

assumed to be a neutral line.

† In flexural-flow, the GL coincides with the shear

direction, and every line parallel to the GL preserves

its length during the deformation.

† In homogeneous strain (layer shortening or fold flatten-

ing), the GL is deformed according to the formulae of

this strain type. Hence, the arc length, amplitude and

width of the fold limb, represented by the GL, are

modified; nevertheless, the curves representing the

deformed and the original GL belong to the same family.

It is remarkable that, when the folding involves a

component of homogeneous deformation, the GL never

represents a finite neutral line.

† The GL will be described by a polynomial function.

Some parameters of this function (width and amplitude

of the fold) will necessarily change during folding,

whereas the other parameters characteristic of this

function can be modified voluntarily, within their

variation interval, in the different steps of the folding

simulation.

A coordinate system will be introduced to describe the

GL. Axis 1 is tangential to the GL at hinge point O and axis

2 is perpendicular to axis 1 at this point (Fig. 8). The unit

vectors e ¼ (e1, e2) form a plane Cartesian base. If f(x ) is the

Fig. 7. f–u (a and b) and R–u (c and d) curves for folds developed by layer shortening plus tangential longitudinal strain plus flattening with different amounts

of shortening (RSh) and flattening (RF). The parameters defining the guideline are u ¼ 0.42 and r ¼ 1. Numbers on the curves indicate the Y ordinate of a layer

boundary in the original configuration; low Y values are necessary because the layer shortening increases the layer thickness to the extent that high lYl values

make the tangential longitudinal strain impossible, since area conservation is impossible. yf/xf is the final aspect ratio of the fold. The portions of the f–u

curves corresponding to fold areas with R $ 2 are drawn with thick lines and the field with R $ 2 in the R–u diagram appears ornamented.
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function used to represent the GL, the position vector of any

point Q of the GL is:

OQ
��!

¼ xe1 þ f ðxÞe2: ð32Þ

Let us consider the line normal to the GL at Q, and the

normal unit vector n(x ) on it. Any point P belonging to the

folded layer and located on the normal line has a position

vector:

OP
�!

¼ OQ
��!

þ hnðxÞ; ð33Þ

where h is a suitably chosen number. Therefore, any point P

of the folded layer can be represented by two numbers (x,

h ). The first one, x, defines point Q, and the second one, h, in

absolute value, indicates the distance between P and the GL

(h . 0 for the convex part of the folded layer and h , 0 for

the concave part); x and h will be named curvilinear

coordinates of point P, and x1 and x2 will be named

Cartesian coordinates of the same point (Fig. 8). The

curvilinear coordinates (x, h ) can be related to the Cartesian

coordinates (x1, x2) by writing the vectorial Eq. (33) in the

base (e1, e2). According to the mathematical theory of curves

(Struik, 1988, p. 13), the normal unit vector at point Q(x ) is:

nðxÞ ¼ bh me1 2 e2

� �
; ð34Þ

where

m ¼ f 0ðxÞ;

m0 ¼ f 00ðxÞ;

b ¼
1ffiffiffiffiffiffiffiffiffi

1 þ m2
p

and

h ¼ signðm0Þ:

Writing OP
�!

¼ x1e1 þ x2e2; and substituting Eqs. (32) and

(34) into Eq. (33), we have the final expressions:

x1 ¼ x þ hbhm

x2 ¼ f ðxÞ2 hbh

)
: ð35Þ

3.1. Analysis of the strain patterns

The strain patterns considered in this model are those

analysed above. However, the treatment is different here

since all the strain patterns, with the exception of the first

one applied, operate on a folded layer.

Tangential longitudinal strain. To obtain the image of

the points of the GL, let us assume that f(x ) is the function

that represents the guideline (GL) in the initial configuration

of the corresponding folding step and that ft(x ) is the

corresponding function that represents the guideline (GLt)

in its final configuration, that is, after deformation by

tangential longitudinal strain. Point Q on the GL has an

image Qt on the GLt which is well determined (Fig. 9)

because, as the GL is the neutral line, the arc length OQt on

the GLt must be equal to the arc length OQ on the GL. This

condition defines a relationship between x and xt. The length

of both arcs can be obtained from the derivatives m ¼ f 0ðxÞ

and mt ¼ f 0tðxÞ; that is:

length of OQ ¼
ðx

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mðzÞ2

q
dz

length of OQt ¼
ðxt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mtðzÞ

2

q
dz

ð36Þ

Equalising both expressions, we obtain the relationship

between x and xt, which is:ðx

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mðzÞ2

q
dz ¼

ðxt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mtðzÞ

2

q
dz: ð37Þ

To obtain the value of xt for every x, the finite equation (37)

Fig. 8. Reference system (e1, e2) and coordinates used in the generalised

model to define the position of a point P within the folded layer. Cartesian

coordinates: (x1, x2); curvilinear coordinates: (x, h ).

Fig. 9. Image Qt of an initial point Q located on the guideline and folded by

tangential longitudinal strain. A basic condition for this mechanism is that

arc length OQ ¼ arc length OQt.
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must be transformed into an ordinary differential equation.

To do so, we differentiate the two members of Eq. (37) with

respect to x:ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mðxÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mtðxÞ

2

q
dxt

dx
: ð38Þ

The function xt ¼ gðxÞ can be obtained as a solution of the

ordinary differential equation:

dxt

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ mðxtÞ

2

1 þ mtðxtÞ
2

s
; ð39Þ

with the initial condition xtð0Þ ¼ 0. This equation can be

solved automatically using the computer environment

‘MATHEMATICA’e.

To determine the image of a point that is not on the

neutral line, let us consider a point P with curvilinear

coordinates (x, h ). The image of this point is Pt, with

coordinates (xt, ht). In this case xt is once again the solution

of Eq. (39), and ht can be obtained assuming area

conservation. Following a method similar to that used by

Bobillo-Ares et al. (2000), we obtain:

ht ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ hktð2 þ hkÞ

p
2 1

kt

; ð40Þ

where k is the curvature of the GL in Q and kt is the

curvature of the GLt in Qt. Hence, we have the complete

specification of the curvilinear coordinates of the image

point Pt from those of the original point P.

Flexural-flow. In this strain pattern, the GL and every line

parallel to it does not undergo length change. This condition

relates points P(x, h ) and Pt(xt, ht). In this mechanism, every

point inside the folded layer always remains at the same

distance from the corresponding GL; that is, ht ¼ h.

To relate xt and x, we must use the condition that the arc

length O0P on the curve parallel through P to the GL is equal

to the arc length O0Pt on the curve parallel through Pt to the

GLt (Fig. 10). To represent this condition in an analytical

form, we write the equations of the parallel curves by their

corresponding position vector in terms of a parameter z, that

is:

rðzÞ ¼ ze1 þ f ðzÞe2

 !
þ nðzÞh

rtðzÞ ¼ ze1 þ ftðzÞe2

 !
þ ntðzÞh

ð41Þ

where ft is the function representing the GLt and nt is the

corresponding vector. According to a well-known calculus

equation:

length of O0P ¼
ðx

0
r0ðzÞ
"" ""dz

length of O0Pt ¼
ðxt

0
r0tðzÞ
"" ""dz

ð42Þ

Taking into account that the length of O0P ¼ the length of

O0Pt, we obtain the required relationship between x and xt,

that is:ðx

0
r0ðzÞ
"" ""dz ¼

ðxt

0
r0tðzÞ
"" ""dz: ð43Þ

We can again obtain xt in terms of x through a differential

equation. To do so, we differentiate both members of Eq.

(43) with respect to x, assuming that xt is a function of x.

Hence, we obtain:

dxt

dx
¼

lr0ðxÞl
lr0tðxtÞl

xtð0Þ ¼ 0

8><
>:

;
ð44Þ

The solution of this differential equation yields xt for every

x, so that the problem of finding Pt from P in flexural-flow is

solved.

Pure deformation (layer shortening and fold flattening).

Let us assume a pure deformation whose principal

directions coincide with those of the coordinate axes, and

consider a point P of the initial folded layer with curvilinear

coordinates (x, h ) and Cartesian coordinates (x1, x2). The

image of P is Pt, with curvilinear coordinates (xt, ht) and

Cartesian coordinates (x1t, x2t). In Cartesian coordinates the

transformation equations are:

x1t ¼
ffiffiffiffi
lx1

q
x1

x2t ¼
ffiffiffiffi
lx2

q
x2

9>=
>; ð45Þ

where lx1
and lx2

are the quadratic elongations in the

direction of the coordinate axes. These quadratic

elongations are principal values of the strain and are

usually, but not necessarily, lx2
¼ l1:

If the GL of the initial fold is f(x ) and the GL of the

Fig. 10. Layer folded by flexural-flow. The transformation of an initial point

P within the layer to an image point Pt fulfils the following basic conditions:

h ¼ ht and arc length O0P ¼ arc length O0Pt.
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deformed fold is ft(x ), the two are related by:

ftðxÞ ¼
ffiffiffiffi
lx2

q
f

xffiffiffiffi
lx1

p
 !

: ð46Þ

The transformation equations (45), together with Eq.

(35), which gives the change of coordinates, yield:

x1 ¼ x þ hbhðxÞmðxÞ

x2 ¼ f ðxÞ2 hbðxÞhðxÞ

)
; ð47Þ

x1t ¼ xt þ htbhtðxtÞmtðxtÞ

x2t ¼ ftðxtÞ2 htbtðxtÞhtðxtÞ

)
: ð48Þ

These equations allow (xt, ht) to be found in terms of (x,

h ), although, to do so, the nonlinear system (48) must be

solved. This solution can be obtained automatically using

the computer environment ‘MATHEMATICA’e.

3.2. Characterisation of a transformation

A fold is characterised by specifying its GL, which can

be done by choosing a function family of the same form as

Eq. (27), that is, in this case:

f ðxÞ ¼ y0 wu

x

x0

� �� �r

; r $ 1; 0 # x # x0; ð49Þ

with

wuðxÞ ¼ x3ð2 2 xÞ þ ux2ð3 2 5x þ 2x2Þ;

0 # u # 2=3:

ð50Þ

A transformation is specified giving the parameters (x0,

y0, u, r ) of the original GL and the corresponding

parameters (x0t, y0t, ut, rt) of the final GL, defined by the

equation:

ftðxÞ ¼ y0t wut

x

x0t

� �� �rt

; rt $ 1; 0 # x # x0t: ð51Þ

In addition, in order for the transformation to be perfectly

defined for every point of the folded layer, the mechanism

used in the transformation must be specified (tangential

longitudinal strain, flexural-flow or pure deformation).

3.3. Analysis of the state of strain within the folded layer

The mathematical description of the three mechanisms

involved is complicated, so that obtaining each image point

requires the numerical solution of nonlinear equation

systems. Unfortunately, we cannot obtain explicit

equations, expressed in terms of elementary functions,

which would directly give the coordinates (xt, ht) of an

image point in terms of the coordinates (x, h ) of the original

point. Hence, we cannot obtain the deformation gradient by

direct derivation either. We will use a non-exact method to

overcome this difficulty, but the error can be made as small

as we like.

We have divided the folded layer into quadrilaterals,

which are small enough to assume nearly homogeneous

strain within them. Afterwards, using the mathematical

methods described above, we obtained the images of the

vertices of the original quadrilaterals. Analysing the relation

between each original quadrilateral and the corresponding

deformed quadrilateral, it is possible to approximately

obtain the deformation gradient at any point of the

quadrilateral. The error can be made as small as we want

by making the quadrilaterals sufficiently small.

Obtaining the strain tensor approximately. To numeri-

cally obtain the deformation gradient, we must search for

the simplest quadratic relationship between the four original

points and their corresponding images. Deriving these

relationships, it is possible to obtain the deformation

gradient at any point of the quadrilateral.

Let P, P1, P2 and Q be the four vertices of the original

quadrilateral, and Pt, P1t, P2t and Qt the corresponding

points of the deformed quadrilateral (Fig. 11). First of all, an

expression must be found for the points inside the original

quadrilateral. Taking P as origin, any point T of this

quadrilateral is obtained by the equation:

PT
�!

¼ s1v1 þ s2v2 þ s1s2w ð52Þ

where v1 ¼ PP1
��!

; v2 ¼ PP2
��!

and wt ¼ PQ
�!

2 v1 2 v2: Vary-

ing s1 and s2 between zero and one, it is possible to obtain all

the points inside and on the boundaries of the quadrilateral.

Particularly, points P, P1, P2 and Q correspond, respect-

ively, to the following values of (s1, s2): (0, 0), (1, 0), (0, 1)

and (1, 1).

Fig. 11. Initial (a) and deformed (b) configurations corresponding to a folding step for an individual quadrilateral of the layer grid.
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Expressions for the points of the deformed quadrilateral

can be found in the same way; that is:

PtTt
��!

¼ s1v1t þ s2v2t þ s1s2wt; ð53Þ

where v1t ¼ PtP1t
���!

; v2t ¼ PtP2t
���!

and wt ¼ PtQt
��!

2 v1t 2 v2t:

Let us assume that the image of point T is approximately

point Tt, with both points corresponding to the same values

of s1 and s2. The transformation based on this supposition

does not in general involve a homogeneous deformation, so

that the deformation gradient depends on the point

considered in the quadrilateral. At any point T of the

original quadrilateral, let us consider the small vectors:

d1 PT
�!

¼
›PT
�!
›s1

ds1 ¼ u1ds1; where u1 ¼ v1 þ s2w

d2 PT
�!

¼
›PT
�!
›s2

ds2 ¼ u2ds2; where u2 ¼ v2 þ s1w

9>>>>=
>>>>;

ð54Þ

Their images are also small vectors located at Tt (s1, s2):

d1PtTt
��!

¼
›PtTt
��!
›s1

ds1 ¼ u1tds1; where u1t ¼ v1t þ s2wt

d2PtTt
��!

¼
›PtTt
��!
›s2

ds2 ¼ u2tds2; where u2t ¼ v2t þ s1wt

9>>>>=
>>>>;
ð55Þ

The material deformation gradient F in (s1, s2) is a linear

operator, and hence, it is determined specifying its effect on

two linearly independent vectors, that is:

d1PtTt
��!

¼ F d1 PT
�!� �

d2PtTt
��!

¼ F d2 PT
�!� �

9>=
>; ð56Þ

Cancelling the differential coefficients ds1 and ds2, we

obtain the finite relationships:

u1t ¼ Fðu1Þ; u2t ¼ Fðu2Þ: ð57Þ

The matrix of F in the bases u ¼ (u1, u2) and ut ¼ (u1t,

u2t) is the unit matrix I; hence, the matrix Fe is obtained in

the Cartesian base e ¼ (e1, e2) through the corresponding

base changes:

Fe ¼ B21IA ¼ B21A; ð58Þ

where A is the matrix of base change from u ¼ (u1, u2) to the

Cartesian base e, and B is the matrix of base change from

ut ¼ (u1t, u2t) to the Cartesian base e. From Fe, Cauchy’s

finite strain tensor and its principal directions and values can

be determined by the method described in the first part of

this paper.

4. Geological application

In Section 2, curves have been obtained (Figs. 2 and 4–7)

that describe the main features of folds originated by several

combinations of strain patterns. These curves can be used as

standards for comparison with curves obtained from natural

folds. f vs. u curves can be easily obtained from cleavage

patterns in natural folds. In this way, it is possible to obtain a

first approach to the kinematical mechanisms involved in

the formation of natural folds. This information can provide

some useful keys for further analysis using the general

method described in Section 3.

The theory developed in Section 3 has been used to

construct a computer program that generates theoretical

folds for any combination of the strain patterns considered

(tangential longitudinal strain, flexural-flow and pure

deformation by layer shortening or fold flattening). The

environment ‘MATHEMATICA’e has been used for this

purpose. All the geometrical characteristics of the theoreti-

cal folded layer produced by this method can be easily

determined. The input data to run this program are:

† Data on the initial form of the folded layer. The input

data set p1 consists of four parameters that characterise

the GL: initial value of x0 of the fold (usually the unit),

initial value of y0 (initial amplitude, usually zero), and

values of u and r (they define the shape of the GL). An

example of input data is shown in Fig. 12b ( p1 ¼ {1, 0,

0.42, 1}).

† Data on the grid of parallelograms that mark the strain

within the folded layer: number of parallelograms along

the folded layer, and number and height of the

parallelograms to place above and below the GL.

† Data on the strain patterns involved in the folding. They

depend on the type of strain pattern. In tangential

longitudinal strain and flexural-flow (termed patterns 1

and 2, respectively), it is necessary to introduce the

increment in normalised amplitude (y0/x0) and the

increments in u and r that each mechanism must produce

every time it is considered. In pure deformation (named

pattern 3), every time that this mechanism is considered,

it is necessary to introduce the value of lx1
(usually

ffiffiffi
l2

p
)

and the value of the area change (ratio between final area

and initial area, that is, the jacobian of the material

Fig. 12. Fit of a natural fold using the general model. (a) Antiform developed in a lower Cambrian sandstone near Cudillero (Spain) whose right limb has been

fitted. (b) Input data characterising the theoretical fold (p1, block1, block2, block3), and comparison of some outputs of the theoretical fold with the

corresponding parameters of the natural fold (t0/y0a is the ratio between the hinge thickness and the amplitude of the outer arc). (c) Ramsay’s classification of

the theoretical folded layer (line) and the natural fold (dots). (d) Initial configuration of the theoretical layer. (e) Folded configuration of the theoretical

layer showing the strain ellipses and shading proportional to the aspect ratio of the strain ellipses. (f) and (g) f–u diagrams for the outer and inner

arcs, respectively, showing the data obtained from the theoretical folded layer (line) and the natural fold (dots). (h) and (i) R–u diagrams for the outer and

inner arcs, respectively, showing the strain pattern predicted for the theoretical fold.
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deformation gradient). The strain patterns are introduced

in blocks. The same mechanism can be introduced

repeatedly in a single block. An example is shown in Fig.

12b, in which block2 ¼ {1, {1, 0.33, 0, 0}, {2, 0.07, 0,

0}} has three parts: the first one is a whole number (one

in this case), which indicates the number of times that the

strain patterns involved in the block will be executed

(once in this case); the second one is a set that indicates a

folding step in which pattern 1 is applied (tangential

longitudinal strain) with an amplitude of 0.33, and

without changes in the parameters u and r; the third one

is a set that indicates a folding step in which pattern 2

(flexural-flow) is applied with an amplitude increment of

0.07, and without changes in the parameters u and r.

Although only two folding steps have been included in

this example, in general, more steps can be introduced in

a single block. Several blocks can be included in a single

program and executed sequentially.

† Data on the ornamentation of the folded layer profile.

The main data of this type refer to the representation of

the strain ellipse and/or their axes, and to the definition of

a grey level to enhance several features of the folded

layer, such as, for instance, the ellipticity variation of the

strain ellipse.

The program outputs a large amount of information

about the geometry and the state of strain of the folded layer,

including the following data (Fig. 12):

† The ellipticity of the strain ellipse corresponding to each

folding step of pure deformation introduced in the model.

† The bulk shortening associated with the folding.

† The value of the final amplitude (y0 ¼ yf) and width of

the fold (x0 ¼ xf), as well as the ratio between these two

parameters (final normalised amplitude yf/xf).

† The values of the u and r parameters characteristic of the

final GL.

† The ratio between the thickness at the point with dip zero

and the amplitude of the outer arc of the folded layer.

† The drawing of the folded layer, showing the deformed

grid of parallelograms, the distribution of strain ellipses

and their axes, and a variation in the grey level depending

on the ellipticity of the strain ellipse.

† The f–u and R–u curves for the inner and outer arcs of

the folded layer.

† Ramsay’s classification of the folded layer.

Summarising, the model provides complete information

about the folded layer generated theoretically for any

chosen combination of strain patterns considered. This

information can be used to predict geological features that

can appear in folded rocks.

This method can also be used to analyse the folding

mechanisms involved in the development of natural folds,

since adequate information about the geometry and

cleavage distribution in a natural folded layer enables its

fit by modelled folds; the interpretation of the results can

help to clarify many features of the development of the

natural fold. In addition, the method makes the kinematical

analysis of folds produced by experimental or numerical

methods possible, such as the finite element method; in

these cases, the analysis is facilitated by the knowledge of

the initial and intermediate configurations. The information

from a natural fold, or any other fold type, necessary to fit it

with a theoretical fold is:

† Geometry of the folded surfaces. This analysis can be

made using the classification method developed by

Bastida et al. (1999), from which it is possible to obtain,

for the bottom and the top of the bed, the ratio y0/x0 and

the exponent n of the corresponding power functions.

The values of y0/x0 and n of the GL can be approximated

with the mean value of these parameters for the bottom

and the top. For a theoretical approximation of a natural

fold, each power function with exponent n can be

approximated by a fourth-grade polynomial function

with certain values for parameters u and r. To find these

parameters, we define the quadratic error as:

E ¼
ð1

0
xn 2 wuðxÞ

r
 !2

dx ð59Þ

The u and r values are found by minimising error E.

† The ratio between the layer thickness at the point with

dip zero and the amplitude of the outer arc of the folded

layer.

† The axial direction and the axial surface orientation of

the fold.

† The f–u curves for the inner and outer arcs of the folded

layer. These curves can be determined by measuring dips

of the bedding and primary cleavage at as many points of

the bottom and the top of the folded layer as possible.

This method assumes that the cleavage surfaces are

perpendicular to the direction of maximum finite short-

ening. Since, in the theoretical models, the profile plane

and the axial trace are vertical, the orientation of the axis

and the axial surface of the natural folds must be rotated

by stereographic projection methods until the axis

becomes horizontal and the axial surface vertical. This

rotation must also be applied to the bedding and cleavage

surfaces used to obtain the f–u curves.

† Ramsay’s classification of the folded layer.

† If possible, the strain ratio R should be obtained at points

of the layer boundaries to construct R–u curves.

Information about the variation of the R ratio through a

natural folded layer is not generally available. However, if

the rest of the information above about the folded layer is

available, many good fits with theoretical folds with

different R–u curves for the layer boundaries can be

found in many cases. These fits present different patterns of

kinematical mechanism superposition and finding the one

that best describes the kinematical history of the natural fold
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is difficult. Nevertheless, the superposition patterns for these

fits usually have some common features that enable some

conclusions to be drawn about the mechanisms involved in

the folding. A better approximation to the knowledge of the

strain pattern and the kinematical history of a natural folded

layer requires a few complementary strain measures at least.

The general fitting method described above has been

applied to many natural folds using a trial-and-error method

and taking as a basis the f–u curves obtained in Section 2

and standard curves obtained applying the generalised

model. An example of a good fit is shown in Fig. 12. In this

case, an approximately sinusoidal GL has been deduced for

the natural fold and used in the theoretical model

(parameters u and r equal to 0.42 and 1, respectively, in

p1 of Fig. 12b). The initial thickness is 0.25 (Fig. 12d). The

strain patterns involved in the fold steps of the model are: (I)

an initial pure deformation with
ffiffiffiffi
lx1

p
¼

ffiffiffi
l2

p
¼ 0:72 and

without area change, that is,
ffiffiffiffiffiffiffi
l1=l2

p
¼ 1:93; (II) tangential

longitudinal strain giving rise to an amplitude of 0.33; (III)

flexural-flow giving rise to an amplitude increment of 0.07;

and (IV) pure deformation with
ffiffiffiffi
lx1

p
¼

ffiffiffi
l2

p
¼ 0:67 and

without area change, that is,
ffiffiffiffiffiffiffi
l1=l2

p
¼ 2:23: By trial-and-

error, 0.25 is the maximum thickness found that yields a

good fit, but good fits different to that in Fig. 12 are also

possible for any initial thickness .0 and #0.25. All these

fits have roughly similar amounts of tangential longitudinal

strain (0.25–0.4), flexural flow (0–0.15) and fold flattening

(0.65–0.77); the main difference between them is in the

amount of layer shortening (0.28–0.74) and consequently of

bulk shortening (any value $54.6% and ,100% is

possible). For a specific thickness, slight variations can be

made in the folding steps that keep a good fit. For example,

for the thickness of 0.25 considered in Fig. 12, the amount of

tangential longitudinal strain can vary between 0.3 and 0.4,

flexural-flow between 0 and 0.09 and total pure deformation

between 0.46 and 0.51.

In the above analysis, no area change has been allowed in

the model. Nevertheless, volume changes of up to 10%

during deformation are probably common in deformed

rocks; greater changes are probably rare (Wood, 1974; Tan

et al., 1995). Good fits involving area changes of up to 10%

in the pure deformation folding steps only require minor

changes in the amount of the kinematical mechanisms

involved in the model. The most remarkable change is

produced in layer shortening, which increases as the area

decreases. In the models analysed, for an area change of

10%, the bulk shortening can increase up to about 3%,

depending on the initial thickness.

According to our results, the natural folds that can be

fitted by the method proposed generally allow an infinite

number of fits. Evidently, all these fits are not equally

probable. One set of fits involves huge values of R and bulk

shortening and is geologically unrealistic. The discrimi-

nation of an interval of geologically realistic fits can be

made in each case from structural considerations. The

availability of strain data from the folded rocks is the key for

a maximum reduction of the field of possible fits. In these

cases, the method is to find the fits that have curves R–u

fitting the strain measurements.

5. Discussion and conclusions

The analysis of the deformation gradients of some

folding mechanisms forming symmetric folds has been used

to obtain theoretical models of folds resulting from simple

combinations of these mechanisms. Each strain pattern

(layer shortening, tangential longitudinal strain, flexural-

flow and fold flattening) is characterised by a deformation

gradient, and the multiplication of selected gradients in the

proper order determines the state of strain in the folded

layers. This state has been described by two types of graphs:

the first one represents the orientation (angle f ) of the major

axis of the strain ellipse on the fold profile plane as a

function of the dip layer u and the second one represents the

aspect ratio R of the strain ellipse as a function of u. In this

way, it is possible to obtain families of standard curves that

can be used as a basis for the strain analysis of folds.

Cleavage has been considered as the reference ductile

structure that can appear in folds when the ratio R is large.

The following conclusions can be drawn from our analysis:

† The development of cleavage is improbable in folds

formed by flexural-flow. It could only be possible for dip

values greater than those usually reached by beds

affected by this folding mechanism.

† In sinusoidal and nearly sinusoidal folds originated by

layer shortening plus tangential longitudinal strain, the

presence and extension of cleavage mainly depend on the

amount of layer shortening. As it increases, cleavage

appears first in the inner arc of the hinge zone far from

the guideline; then, it progresses towards the guideline

and the fold limb; finally, it can penetrate the outer arc,

from the limbs towards the hinge. In this type of folding

the cleavage would be strongly convergent.

† In folds originated by layer shortening plus flexural-flow,

as the shortening increases the cleavage progresses from

the limbs towards the hinge. The cleavage would be

divergent in an interval of lesser dips and convergent for

higher dips. Nevertheless, if the shortening is high, the

cleavage pattern can be a convergent fan throughout the

entire fold.

† In sinusoidal and nearly sinusoidal folds generated by

tangential longitudinal strain plus flattening, the pattern

of increase of the R value through the fold during its

development is similar to that found in folding by layer

shortening plus tangential longitudinal strain. Never-

theless, the possible cleavage pattern is different since in

this case it would be a convergent fan in the inner arc and

a divergent fan in the outer arc; both arcs would tend to

have axial plane cleavage with very large amounts of

flattening.
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† The cleavage pattern of the flattened flexural-flow folds

or the folds originated by layer shortening plus flexural-

flow is not very different from that of the folds involving

layer shortening plus flexural-flow plus flattening. The

strain ratio is higher in the zone near the inflection points

than in other parts of the fold, and the cleavage

progresses from the limbs towards the hinge zone. The

cleavage pattern is dominantly divergent, although it

tends to an axial plane pattern for large amounts of

flattening.

† In sinusoidal and nearly sinusoidal folds originated by

layer shortening plus tangential longitudinal strain plus

flattening, the cleavage would appear first in the hinge

zone of the inner arc and then progress through the entire

structure as the shortening and flattening increased. The

cleavage pattern predicted is a convergent fan, tending to

an axial plane pattern with high shortening and flattening.

The strain analysis in folds using deformation gradients

is limited to simple cases of folding, because the

mathematical treatment to find the final deformation

gradient is very complicated when tangential longitudinal

strain or flexural-flow are applied to a previously folded

layer. An alternative theoretical method of more general

validity has been developed to avoid this complication. In

this method each mechanism operates during a folding step,

so that the initial configuration of the step is generally a

folded form and the final configuration of the step

corresponds to the same folded layer with slightly higher

amplitude. The method consists in applying the properties

of each mechanism to find the image point of any initial

point for each step. After the superposition of a finite

number of folding steps, it is possible to obtain a grid of

deformed points derived from those of the original grid. The

analysis of the deformed grid reveals the geometry and the

strain distribution on the folded layer. Hence, this general

method is a powerful tool to theoretically analyse the

geometry and kinematics of folds originated by any

successive or simultaneous superposition of the mechan-

isms involved in the modelling (layer shortening, tangential

longitudinal strain, flexural-flow and fold flattening).

The results of the latter fold modelling method can be

applied to the analysis of the geometry and strain patterns in

natural and experimental folds. Particularly, in a natural

fold, when the geometry of the folded layer and surfaces,

and the dip of the bedding vs. dip of the cleavage are known,

we can try to fit these data with theoretically modelled folds.

Nevertheless, several constraints condition how the fits are

obtained and interpreted.

The first limitation is that the general method only

models symmetric folds. Another limitation is given by the

possible influence in natural folds of strain patterns that

have not been considered in the modelling method.

Mechanisms such as neutral line migration or hetero-

geneous area change during folding are probable in folds

formed by tangential longitudinal strain with high defor-

mation, and neglecting them can give rise to errors.

Flexural-slip is a frequent folding mechanism in multi-

layered systems, but is rare in individual layers and has

therefore not been considered in this paper. Heterogeneous

simple shear across the layers is probably infrequent in

nature (González-Bonorino, 1970; Ramberg, 1963) and has

not been considered here either. Another limitation of the

method appears in incompetent layers adjacent to competent

levels, since mechanisms not considered in our models, such

as inverse tangential longitudinal strain (Ramsay and Huber,

1987), may be active in these layers. In particular, class 3

folds, common in incompetent layers, cannot be produced

by the models considered above. In general, when a natural

fold cannot be fitted by a combination of the mechanisms

considered here, we can infer that other mechanisms have

affected the fold development. The method developed in

this paper must be improved in the future with the addition

of new mechanisms that will have to be mathematically

described.

The deformed configuration of the rocks generally does

not supply much data on the state of strain, and in most cases

the variation of the cleavage orientation through the folded

layer is the easiest information to use to fit the geometry of

the natural fold with a theoretical fold. Nevertheless, the use

of cleavage to obtain principal directions of strain can

involve errors. Fortunately, the large number of strain

measurements in rocks with primary cleavage suggests that

this error is small (see, for instance, Wood, 1974). When a

natural fold is fitted by theoretical folds using only

information about the geometry of the natural folded layer

and the variation of the cleavage orientation, without strain

measures, an infinite number of fits exist in many cases, in

that fits are possible for any initial thickness ranging

between .0 and a maximum value. These fits yield

different bulk shortening and the difference between the

mechanisms involved in them is mainly in the amount of

layer shortening, with the remaining mechanisms under-

going small variations. The R–u curves for these fits are also

different.

When strain measures in the folded rocks are available,

the method enables the selection of the fits with R–u curves

compatible with the strain data. In this case, every

mechanism operates with similar intensity in all the possible

fits, and there is a narrow range of initial layer thickness and

bulk shortening.

The introduction of area decrease in the pure deformation

steps of the models produces fits with higher layer

shortening. However, for the most common area decreases

in deformed rocks (up to 10%; Wood, 1974; Tan et al.,

1995), the variations in layer shortening admitted by the

model are small (,3% in layer shortening increase).

Therefore, in most cases, the error linked to the choice of

the area change in the models is probably small.

Some errors can be induced in the fit of natural folds due

to the difficulty derived from the choice of the guideline,

since the assumption that the shape of this line is the average
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shape of the bottom and top lines is only an approximation.

In addition, the fit of the guideline by a polynomial function

is another source of errors. Notwithstanding, small errors in

the shape of the guideline produce very small errors in the fit

of strain patterns involved in the folding. The identification

of the boundaries of a folded layer can also be problematic,

because the significance of the boundaries between layers

with little lithological contrast is difficult to interpret in

terms of folding mechanisms. Another source of problems is

given by the lack of a complete knowledge on the original

configuration of the natural folded layer. This is obviously a

general problem in structural geology that in turn prevents a

complete knowledge of the state of strain in folded layers.

The fit of folds obtained experimentally or by numerical

methods, such as the finite element method, using the

analysis here proposed, can be a valuable contribution to the

understanding of the kinematics of folding, since in these

cases the initial and intermediate stages of the process can

be known.
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